$0040 - 4039/89$ \$3.00 + .00

TRIBUTYLTIN HYDRIDE-INDUCED 0-STANNYL KETYLS IN THE CYCLIZATION OF ALDEHYDES AND KETONES WITH ALKENES

Eric J. Enholm* and Girija Prasad Department of Chemistry, University of Florida Gainesville, Florida 32611

Abstract: An aldehyde or a ketone connected by a tether to an olefm efficiently cyclizes in a free radical reaction mediated by tributyltin hydride. The effects of activated olefins on this reaction, which provides functionalized cyclopentane rings and y-lactones from 0-stannyl ketyls in a mild and regiocontrolled manner, were also studied.

The development of free radical cyclization reactions in total synthesis and in new synthetic methodology has undergone a major increase in recent years.¹ These reactions often involve a variety of well-known precursors to a carbon-centered radicals, such as a halides, thioacyl moieties, olefins, selenides and sulfides, which can be used to produce substituted cyclopentane derivatives when treated with tributyltin hydride.^{1,2} O-Stannyl ketyls,³ produced by the reaction of a carbonyl functional group with a trialkyltin radical,⁴ can also provide a carbon-centered radical for these cyclization reactions. To our knowledge, this type of reaction has never been applied to five-membered ring synthesis, nor have various olefin substituents been studied.5 We now report a mild and regiocontrolled method to construct substituted cyclopentanols and γ -lactones from an aldehyde or a ketone connected to an alkene by a tether.⁶

We have investigated a number of substrates tabulated in Table 1. Overall, the **reaction** appears to be quite successful. It is interesting to note that in most cases the olefin was activated to 5-hexenyl-l-oxy free radical cyclization with an electron-withdrawing group. Entry 4 clearly illustrates that this an important condition for success. A substantial amount of the simple reduction of the aldehyde carbonyl in 12 to an alcohol (44% yield) was also obtained, which was not observed in any other five-membered ring precursor. The yields for all of the other reactions with activated olefins ranged from 69-88% and were generally acceptable. In the cases involving a methyl ester or a nitrile, the syn product was always isolated as the γ -lactone. Fairly dilute (0.10 M) reaction conditions were also an important factor in the success of the reaction. A 1,2-pinacol coupled byproduct, 3 presumably formed from quenching the 1,2-bisstannyl pinacol during workup, was observed at increased concentrations.⁷

The two diastereomeric products arise from the syn- or anti-dispositions of the alcohol and substituted methylene appendage and reflect the formation of two new sp^3 centers from the two sp^2 centers of the carbonyl and the olefin. The ratios ranged from approximately a 1:1 to 3:1 for all entries. Lower temperature (23 \degree C)

Entry	Starting Substrate ^a	Products		Anti: Sym^b	Yield ^c
$\mathbf 1$	OHC $\mathbf{3}$ CO ₂ CH ₃	CO ₂ CH ₃ $+$ 'OH $\overline{\mathbf{4}}$	Ħ -0 $\dot{\tilde{\textbf{H}}}$ 5	58:42	81%
$\mathbf 2$	OHC 6^d $\rm \dot{P}h$. Ph $\ddot{}$ "OH $\overline{7}$	- Ph OH $\bf 8$	53:47	80%
$\overline{\mathbf{3}}$	OHC 9 ^d ĊN	CN 4 "OH ${\bf 10}$	Ħ :0 O $\overline{11}$ \overline{H}	52:48	73%
$\ddot{}$	OHC C_5H_{11} 12^e	C_5H_{11} $\ddot{}$ "OH 13	C_5H_{11} OH 14 \mathbf{o}	66:34	32%
5	CO ₂ CH ₃ ٥, 15	CO ₂ CH ₃ OH ┿ 16	0 17 О	76:24	69%
6	CO ₂ CH ₃ ٥ś 18^f	CO ₂ CH ₃ $\ddot{\mathbf{H}}$ $\ddot{}$ 19	О. 20	58:42	88%

Table 1 Intramolecular Radical Cyclizations of Aldehydes and Ketones With Olefins

^aAll new compounds give IR, ¹H NMR, ¹³C NMR, mass spectrum and combustion analysis and/or accurate mass data consistent with the structure shown; other compounds were compared with known $6(c)$, (e) spectral data; bRatio determined on the crude reaction mixture by capillary GC using a 30 m J&W DB1701 column; ^cYield data is for the mixture of both syn and anti products; ^dThe starting substrate was a 2:1 trans:cis mixture; ^eThe starting substrate was a 5:1 cis:trans mixture; ^fThe starting substrate was a 10:1 trans:cis mixture.

photochemical initiation did not alter these ratios to any significant extent.

We have also examined the effect of an activated olefin with two 6-heptenyl-1-oxy modes of cyclization. When citronellal (21) was treated under the same conditions as the reactions above,⁹ citronellol (22) was produced in 95% yield. This cyclization can be predicted to be less favorable than the 5-hexenyl-1-oxy case in Table entry 4, and, as expected, no cyclized products $(< 2\%)$ were observed. The ester 23, conversely, underwent a facile 6-heptenyl-1-oxy cyclization to render six-membered ring compounds 24,25, and 26 in a 19:39:42 ratio,

respectively, in 69% yield and a correspondingly smaller amount (12%) of the simple reduction product. Thus, we conclude that the activation of the olefin appears to also be an important factor for success in the 6-heptenyl-loxy cyclization as well.

Mechanistically, the reaction is probably mediated by a homolytic chain mechanism and proceeds by the addition of a tributyltin radical to the aldehyde carbonyl in 27 to produce O-stannyl ketyl intermediate 28.5 This type of nialkyltin radical addition to a carbonyl to produce 0-stannyl ketyl intermediates in simple carbonyl reductions by trialkylstannanes has been reported.^{4,8} A subsequent free radical cyclization by addition to the olefin produces the carbon-centered free radical intermediate 29. A transfer of hydrogen from tributyltin hydride then renders 30 and tributyltin radical which repeats the process. It is noteworthy that prior to workup, intermediate 30 contains a useful tin alkoxide functionality and can be alkylated and acylated to afford other useful addends.

At the outset of these studies we recognized that the α , β -unsaturated ester could also be reduced, and this has been documented to be a facile process.^{8,10} When tributyltin hydride reacts with this functional group, the olefin is hydrostannylated in preference to ester carbonyl reduction and results in a product bearing a tributyltin moiety β - to the ester. Such tin products are then generally not easily protodestannylated.⁴ These adducts were not observed as byproducts in any of the examples attempted.

In conclusion, a new method for the construction of substituted cyclopentane rings and γ -lactones has been developed. This reaction uses tributyltin hydride in a free radical reaction to form 0-stannyl ketyls which undergo intramolecular addition to activated oleflns in a mild and regiocontrolled manner.

ACKNOWLEDGEMENT. We gratefully thank the University of Florida Division of Sponsored Research and the Department of Chemistry for their generous support of this research.

References

- (1) "Radicals in Organic Synthesis: Formation of Carbon-Carbon Bonds," Bernd Giese, Pergammon Press, New York, 1986.
- (2) (a) Neumann, W.P. Synthesis 1987, 665; (b) Ramaiah, M. Tetrahedron 1987,43, 1987; **(c)** Curran, D. P. Synthesis 1988, $\overline{417}$, 489; (d) Hart, D. J. Science 1984, 223, 883.
- **(3)** Neumann, W. **P.;** Hillgartner, H.; Baines, K. M.; Dicke, R.; Vorspohl, K.; Kobs, U.; Nussbeutel, U. Tetrahedron 1989, 45, 951.
- **(4)** For a review of this topic see: Pereyre, M.; Quintard, J.-P.; Rahm, A. "Tin in Organic Synthesis," Butterworths, Boston, 1987, pp. 69-80.
- **(5)** Sugawara, T.; Otter, B. A.; Ueda, T. Tetrahedron Lett. 1988, 75.
- **(6)** Other methods for the intramolecular coupling of an olefin and a carbonyl include: (a) Pradhan, S. K.; Kadam, S. R.; Kolhe, J. N.; Radhakrishnan, T. V.; Sohani, S. V. Thaker, V. B. J. Ore. Chem, 1981, 46, 2622; (b) Corey, E. J.; Pyne, S. G. <u>Tetrahedron Lett.</u> 1983, 2821; (c) Enholm, E. J.; Trivellas, A. <u>Tetrahedron Lett.</u> 1989, 1063; (d) Molander, G. A., Kenny, C. <u>Tetrahedron Lett.</u> 1987, 4367; (e) Little R. D.; Fox, D. P.; Hijfte, L. V.; Dannecker, R.; Sowell, G.; Wolin, R. L.; Moëns, L.; Baizer, M. M. L <u>Org, Chem,</u> 1988, 53, 2287; (f) Shono, T.; Mitani, M. <u>J. Am. Chem. Soc.</u> 1971, 93, 5284; (g) Shono T.; Nishiguchi, I.; Ohmizu, H.; Mitani, M. <u>J. Am. Chem. Soc.</u> 1978, 100, 545; (h) Little, R. D.; Baizer M. M. in "The Chemistry of Enones," Patai, S.; Rappoport, Z., eds., Wiley, New York, 1989, pp 615- 618, and references therein.
- **(7)** When compound 3 was treated under the same conditions⁹ except at 0.50 M in benzene, compounds 4 and 5 and the 1,2-pinacol byproduct were present in the crude reaction mixture in a 34:27:39 ratio, respectively.
- **(8)** (a) Kuivila, H. G. Adv. Oreanometal. Chem. 1964, I, 47; (b) Ingold, K. U.; Lusztyk, J.; Scaiano, J. C. J. Am. Chem. Soc. 1984, 106, 343; (c) Quintard, J. P.; Pereyre, M. Bull. Soc. Chim. Fr. 1972, 1950; (d) Neumann, W. P.; Heymann, E. Justus Liebigs Ann. Chem. 1965,683, 11.
- **(9)** Procedure: A solution of the aldehyde or ketone in benzene (0.10 M) with AIBN (0.01 eq.) and tributyltin hydride (1.50 eq.) was carefully degassed with argon and heated to 80° C (bath temperature). After 5-8 hours, thin layer chromatography indicated that the reaction was done. The solvents were removed and the crude oil was subjected to flash chromatography to isolate the desired products.
- **(10)** (a) Neumann, W. P.; Sommer, R. Justus Liebigs Ann. Chem. 1964,675, 10, (b) Leusink, A. J.; Budding, H. A.; Drenth, W. J. Qrganometal. Chem. 1968,11, 541.

(Received in USA 29 June 1989)